### Discipline: Actual problems of chemistry of polymer composites

#### Lecture 10.

**Theme:** Manufacturing of Polymer Composites

## **Objective:**

To understand the methods and techniques for manufacturing polymer composites, including the influence of processing parameters on structure, properties, and performance.

### **Key Questions:**

- 1. What are the main manufacturing methods for polymer composites?
- 2. How do processing parameters affect composite quality?
- 3. What are the advantages and limitations of different manufacturing techniques?
- 4. How does reinforcement type and orientation influence the manufacturing process?
- 5. How are defects minimized during composite fabrication?

#### **Lecture Content:**

- Overview of Polymer Composite Manufacturing:
  - o Polymer composites are made by **combining a polymer matrix with reinforcements** (fibers, particles, or fillers).
  - The goal is to produce a material with enhanced mechanical, thermal, and functional properties.
- Classification of Manufacturing Methods:
  - 1. Molding Techniques:
    - Compression Molding: Preheated polymer-resin and reinforcements are pressed into molds.
      - Advantages: simple, suitable for thermosets, good for large parts.
      - Limitations: slower cycle times, limited to moderate complexity.
    - **Injection Molding:** Polymer melt with or without fillers is injected into molds.

- Advantages: high production rate, complex geometries possible.
- Limitations: fiber breakage, uneven orientation of reinforcements.
- **Transfer Molding:** Polymer is transferred into a mold under pressure.
  - Used for high-performance thermosetting composites.

## 2. Lay-Up Methods (for fiber-reinforced composites):

- Hand Lay-Up: Manual placement of fiber sheets and resin.
  - Advantages: simple, low-cost, flexible shapes.
  - Limitations: labor-intensive, variable quality.
- **Spray-Up:** Chopped fibers and resin sprayed into molds.
  - Suitable for large structures but lower mechanical properties.
- Vacuum-Assisted or Resin Transfer Molding (VARTM/RTM): Resin is drawn through fibers under vacuum.
  - Ensures uniform impregnation, reduces voids.

## 3. Extrusion and Pultrusion (for continuous fiber composites):

- Extrusion: Polymer-filler mixture is forced through a die to create continuous profiles.
- **Pultrusion:** Continuous fibers are pulled through resin bath and heated die to produce strong composite rods or beams.

## 4. Calendering and Film Casting:

- Used for thin sheets or films of polymer composites.
- Reinforcement may include nanofillers or platelets.

# • Influence of Reinforcement and Matrix on Manufacturing:

- Fiber type, length, and orientation influence mechanical properties and flow during molding.
- o Matrix viscosity affects wetting, void formation, and surface finish.

# • Processing Parameters:

- o Temperature, pressure, curing time, and shear rates affect:
  - Degree of impregnation of fibers
  - Void content and density
  - Orientation and dispersion of fillers
  - Final mechanical and thermal properties

# • Defects and Quality Control:

- o Common defects: voids, delamination, fiber misalignment, resin-rich or resin-poor areas.
- Techniques to minimize defects: vacuum assistance, proper curing, surface treatment of fibers, optimized flow paths.

# Applications:

- Aerospace: high-strength structural panels
- o Automotive: lightweight body parts
- o Construction: reinforced pipes, panels, and beams
- o Electronics: dielectric and thermal management components

### **Key Short Theses:**

- 1. Manufacturing of polymer composites involves **combining matrix and reinforcement** to enhance properties.
- 2. Methods include molding, lay-up, extrusion/pultrusion, and film casting.
- 3. Processing parameters (temperature, pressure, shear) strongly influence composite quality.
- 4. Reinforcement type, size, orientation, and matrix viscosity determine mechanical properties and defect formation.
- 5. Defects such as **voids**, **delamination**, **and misalignment** reduce performance; vacuum and proper curing minimize them.
- 6. Each manufacturing method has **advantages and limitations** depending on part complexity, size, and required properties.
- 7. Optimized processing ensures high-performance composites for aerospace, automotive, and industrial applications.

## **Control Questions:**

- 1. What are the main manufacturing methods for polymer composites?
- 2. How does fiber orientation affect the properties of composites during processing?
- 3. Compare compression molding and injection molding in terms of advantages and limitations.
- 4. What is the role of matrix viscosity in composite manufacturing?
- 5. Name common defects in polymer composites and ways to reduce them.
- 6. How do processing parameters influence final composite performance?
- 7. Which methods are best suited for continuous fiber composites?

#### **Recommended references**

#### Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.

- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

### Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).